Сборник задач по физике Волновая оптика Квантовые свойства света Дифракция света Методика решения задач по кинематике Колебания и волны Вынужденные электрические колебания

Колебания и волны

Электромагнитные колебания.

Электрический колебательный контур. Формула Томсона.

Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.

Рис.16.1. Электрический колебательный контур. Теория электромагнитного поля Электромагнитные колебания Решение задач по физике примеры

Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:

откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре 

.

 Если ввести обозначение

 ,

 то полученное уравнение принимает вид:

.

Решением этого уравнения, как известно, является функция

.

Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):

Напряжение на конденсаторе:

,

где  - амплитуда напряжения.

Сила тока в контуре:

.

Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются  взаимными превращениями энергий электрического и магнитного полей.

Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.

Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:

.

Уравнения Максвелла. Сравнение основных теорем электростатики и магнитостатики.

Второе уравнение Максвелла. В силу общности теоремы Гаусса применительно к любым векторным полям и отсутствия в природе «магнитных зарядов» (о чем уже говорилось ранее), второе уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для магнитной индукции: Интегрирование производится по произвольной замкнутой поверхности S.

Четвертое уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для электрической индукции: Интегрирование производится по произвольной замкнутой поверхности S, окружающей систему зарядов qi .

Замкнутая система уравнений Максвелла. Материальные уравнения. Для замыкания системы уравнений Максвелла необходимо еще указать связь между векторами , ,  и , то есть конкретизировать свойства материальной среды, в которой рассматривается электромагнитное поле. Если эти соотношения известны (они называются материальными уравнениями), то по заданному распределению зарядов ρ и токов однозначно находится распределение электрических и магнитных полей в данной среде; или по заданному распределению полей находится распределение зарядов и токов.


Измерение силы тока и напряжения в цепях постоянного тока