Сборник задач по физике Волновая оптика Квантовые свойства света Дифракция света Методика решения задач по кинематике Колебания и волны Вынужденные электрические колебания

Пример вычисления индуктивности. Индуктивность соленоида.

Согласно основному соотношению, связывающему между собой ток I и поток , индуктивность проводника определяется выражением:

Применим эту формулу для расчета индуктивности прямого длинного соленоида (рис.14.6). Имеем:

, где магнитное поле

Рис.14.6. К расчету индуктивности соленоида.

Биполярные транзисторы Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов. Расчет электротехнических цепей Лабораторные работы и решение задач

Поток магнитной индукции через один виток катушки ; через все N витков поток равен:

.

Поделив это выражение на I , находим искомую индуктивность соленоида:

где  - число витков на единицу длины;  - объем соленоида.

Если магнитная проницаемость  сердечника зависит от  (силы тока ), что имеет место, когда сердечником соленоида является, например, железный или ферритовый стержень, то  будет зависеть от . Это свойство индуктивности используют, в частности, в различных устройствах релейной защиты электрических цепей при токовых перегрузках.

Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.

При всяком изменении силы тока в каком-либо контуре в нем возникает ЭДС самоиндукции, которая вызывает появление в этом контуре дополнительных токов, называемых экстратоками. По правилу Ленца экстратоки, возникающие в проводниках вследствие самоиндукции, всегда направлены так, чтобы воспрепятствовать изменению тока, текущего в цепи.  В схеме опыта, приведенной на рис.14.7, при замыкании ключа (положение 1) в катушке возникает экстраток замыкания, направление которого противоположно нарастающему току батареи. При этом часть экстратока замыкания ответвляется на батарею, а часть на гальванометр, где его направление совпадает с направлением тока батареи – гальванометр дает дополнительный отброс вправо. 

1 – замыкание ключа: 

2 - размыкание ключа:

Рис.14.7. Экстратоки замыкания и размыкания.

При размыкании ключа (положение 2) магнитный поток в катушке начнет исчезать. В ней возникнет экстраток размыкания, который будет препятствовать убыванию магнитного потока, то есть будет направлен в катушке в ту же сторону, что и убывающий ток. При этом экстраток размыкания теперь целиком проходит через гальванометр, где его направление противоположно направлению первоначального тока – гальванометр дает отброс влево.

Установление и исчезновение тока в цепи, содержащей индуктивность, происходит не мгновенно, а постепенно. Рассмотрим электрическую цепь, состоящую из источника ЭДС , катушки индуктивности L и сопротивления R (рис.14.8). При размыкании ключа в образующейся замкнутой цепи помимо ЭДС  будет действовать ЭДС самоиндукции . По второму правилу Кирхгофа можем написать:  или в виде

.

Решением полученного дифференциального уравнения, полагая, что в начальный момент времени t = 0 ток отсутствовал I(0)=0, является функция:

,

где .

График этой функции приведен на рис.14.8 (кривая 1). Видим, что установление тока в цепи происходит не мгновенно, а с некоторым запаздыванием. Характерное время  называется временем ретардации (запаздывания, задержки).

Рис.14.8. Установление и исчезновение тока в цепи, содержащей индуктивность.

При замыкании ключа образуется контур, содержащий только индуктивность L и сопротивление R (источник ЭДС  при этом блокируется). Теперь в цепи действует только ЭДС самоиндукции , и по закону Ома:  или в виде

 .

Решением этого уравнения, считая, что в начальный момент времени t = 0 ток имел максимальное значение, равное , является функция:

.

График ее приведен на рис.14.8 (кривая 2). Видим, что исчезновение тока в цепи происходит не мгновенно, но с запаздыванием.

  Характерное время  называется в этом случае временем релаксации (восстановления).

Явление электромагнитной индукции. Закон Фарадея и правило Ленца. ЭДС индукции. Электронный механизм возникновения индукционного тока в металлах. Явление электромагнитной индукции было открыто в 1831г. Майклом Фарадеем

Примеры применения закона электромагнитной индукции. Рассмотрим ряд примеров на применение основного закона электромагнитной индукции Фарадея.

Энергия магнитного поля. Плотность энергии.


Измерение силы тока и напряжения в цепях постоянного тока