Задачи
Электротехника
Реактор
Лекции
ПК
Электроника
ВВЭР-1200
Геометрия
Физика
Информатика
АЭС
Задачи
Строймех
Контрольная
Энергетика
Решения

Примеры решения задач по начертательной геометрии

Основные геометрические фигуры

Способы задания геометрических фигур.

 Два способа задания геометрических фигур: кинематический и статический.

 Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры. Пример записи: “”. Здесь – название фигуры в общем случае, – образующая линия (точка с запятой), и  – направляющие линии и  – направляющая плоскость. Если характер образующей понятен из названия фигуры, то в скобках отражаются только направляющие элементы. Например: “Коническая поверхность общего вида ”. В этом случае из названия фигуры ясно, что образующей является прямая линия, а в скобках – только направляющие элементы: кривая линия и вершина конуса . Курс лекций по начертательной геометрии Результат накладывается или полностью совпадает с вырожденной проекцией одной из пересекающихся фигур. На комплексном чертеже остается только построить вторую проекцию результата пересечения. Используя принадлежность результата пересечения к пересекающейся фигуре общего положения.

 Статический способ основан на задании фигуры каркасом из неподвижных точек и линий. Каркас называется дискретным, если нет математической закономерности образования его элементов. Уплотнить такой каркас дополнительными элементами можно только с определенными погрешностями. Примером могут служить дискретные каркасы топографических и сложных технических поверхностей. Непрерывный каркас отличается закономерным образованием его элементов. Это дает возможность теоретически бесконечно уплотнять каркас дополнительными элементами. Примером может служить каркас конуса вращения, заданного семейством окружностей с центрами на оси вращения, радиусы которых ограничены прямой линией, проходящей через вершину конуса.

Прямая линия, плоскость и многогранник

  Прямая линия может быть задана одним из двух способов (Рис13 и 14):

– Точкой и направлением (кинематический способ). .

– Двумя точками (статический способ, точечный каркас): .

 Возможные способы задания плоскости (Рис.15):

– Тремя точками. .

– Точкой и прямой линией .

– Двумя параллельными линиями .

– Двумя пересекающимися линиями

– Треугольником . И так далее.

На комплексном чертеже – произвольная точка . Задать точку   правее точки  на 20 мм, ближе ее на 10 мм и выше – на 15 мм.

На линии связи  отметить разницу  и через полученную точку под прямым углом провести линию связи для последующего построения на ней проекций и .

Основные геометрические фигуры Геометрические фигуры относительно плоскостей проекций могут занимать произвольное (общее) или одно из частных положений.

Другая разновидность геометрических фигур частного положения – проецирующие прямые и плоскости: горизонтально проецирующие, фронтально проецирующие и профильно проецирующие


Математика

Вычисление интеграла
Контрольная
Аварии на АЭС
Туризм