Начертательнаягеометрия Метод совмещения плоскостей Сечение многогранников плоскостью Построить проекции фигуры сечения сферы плоскостью Метод эксцентрических сфер Изображение предметов Построить сечение пирамиды


Примеры решения задач по начертательной геометрии

Задание прямой в пространстве

Любая прямая в пространстве может быть задана:

двумя точками, принадлежащими этой прямой;

одной точкой, принадлежащей данной прямой, и ее направлением.

В первом случае задаются координаты двух заданных точек, во втором — координаты одной точки и направление прямой. Сопряжение – это плавный переход от одной линии к другой. То есть: касание прямой и дуги окружности, касание двух дуг окружностей. Это и плавный переход от одной линии к другой при помощи третьей, промежуточной линии. Точки касания линий называются точками сопряжения, а центры дуг – центрами сопряжения. Выполнить сопряжение при заданных радиусах – значит предварительно построить необходимые центры и точки сопряжения.

Положение прямой в пространстве

Положение прямой в пространстве оценивается расположением ее относительно трех плоскостей проекций. При этом возможны следующие варианты.

Прямая не параллельна ни одной из плоскостей проекций. Такую прямую называют прямой общего положения (рис. 4.1). Все точки прямой имеют различные координаты х, у, z, и ее проекции не параллельны осям проекций х, у, z.

Прямая параллельна одной из плоскостей проекций. Все точки прямой имеют одну постоянную координату x:, y или z. При этом одна из проекций прямой параллельна какой-то оси проекции. Такую прямую называют линией уровня (рис. 4.2).

На рис. 4.2, а прямая а параллельна плоскости П1, в этом случае ее фронтальная проекция а2 параллельна оси х, координата z для всех точек прямой постоянна.

На рисунке 4.2, б прямая b параллельна плоскости П2, в этом случае ее горизонтальная проекция а2 параллельна оси x:, координата у для всех точек постоянна.

На рисунке 4.2, в прямая с параллельна плоскости П3, в этом случае ее горизонтальная проекция с1 параллельна оси у, фронтальная проекция с2 параллельна оси z, координата x для всех точек прямой постоянна. Данную прямую в системе плоскостей проекций П2/П1 следует задавать проекциями отрезка АВ.

Проецирование точки на две и три плоскости проекций Если поместить точку А, находящуюся в пространстве, относительно двух плоскостей проекций П, и П2, опустив из нее перпендикуляры на эти плоскости, получают точки А, и А2, которые являются ортогональными проекциями точки А относительно плоскостей проекций П1, и П2. Они характеризуются координатами, которые числен но равны расстоянию от точки А до соответствующих плоскостей

Определение по плоскому чертежу принадлежности точки тому или другому октанту пространства

Такую прямую называют проецирующей прямой

Следом прямой называется точка пересечения прямой с плоскостью проекции. Горизонтальным следом прямой называют точку пересечения прямой с горизонтальной плоскостью проекций


Способы преоразования проекций