Начертательнаягеометрия Метод совмещения плоскостей Сечение многогранников плоскостью Построить проекции фигуры сечения сферы плоскостью Метод эксцентрических сфер Изображение предметов Построить сечение пирамиды


Примеры решения задач по начертательной геометрии

Способ прямоугольного треугольника

Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и так далее. Посмотрим на способ прямоугольного треугольника как частный случай замены плоскостей проекций. Это тот случай определения длины отрезка, когда один из его концов принадлежит плоскости проекций, а новая плоскость проекций проводится через сам отрезок (Рис.58). На чертеже это новая ось, совпадающая с проекцией отрезка. При этом искомая величина отрезка окажется равной гипотенузе прямоугольного треугольника, один из катетов которого есть проекция отрезка. Помимо длины треугольник содержит в себе и другие сведения об отрезке.

Точно такой же треугольник с точно такими же сведениями об отрезке можно получить без операции проецирования и даже – на безосном комплексном чертеже. Применим одну из проекций отрезка за катет прямоугольного треугольника. Второй катет равен разности координат концов отрезка в направлении, в каком была задана выбранная проекция. Что имеем в итоге:

Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk и собственного веса 

Взаимное пересечение многогранников Что касается линии взаимного пересечения двух многогранников, то она определяется по точкам пересечения рёбер одного многогранника с гранями другого: это известная задача на определение точки пересечения прямой с плоскостью, хотя возможен вариант построения линии пересечения граней многогранников , т.е. линии пересечения двух плоскостей.

1) Длина отрезка равна гипотенузе прямоугольного треугольника, один катет которого – это проекция отрезка, второй катет – равен разности координат концов отрезка, измеренной в направлении получения использованной проекции отрезка.

2) Угол наклона отрезка к плоскости проекций равен углу между гипотенузой и проекцией отрезка на той же плоскости.

Пример (Рис.59). Определить длину отрезка и угол его наклона  к плоскости .

При определении длины отрезка за катет прямоугольного треугольника может быть выбрана любая проекция отрезка. Другое дело, если определяется угол наклона отрезка к той или иной плоскости проекций. Здесь выбор падает на проекцию отрезка, принадлежащую именно той же плоскости проекций.

Решение:

Строим прямоугольный треугольник, приняв за катет фронтальную проекцию отрезка . Второй катет по длине равен разности координат точек  и  в направлении мнимой в данном случае оси y. На чертеже эта разница берется на другой плоскости проекций: на плоскости . Из построенного треугольника делаем выводы:

1) ,

2) .

Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Перпендикулярность прямых и плоскостей

Линия наибольшего наклона на плоскости

Классификация метрических задач (определение углов и расстояний) Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа.


Способы преоразования проекций