Начертательнаягеометрия Метод совмещения плоскостей Сечение многогранников плоскостью Построить проекции фигуры сечения сферы плоскостью Метод эксцентрических сфер Изображение предметов Построить сечение пирамиды


Примеры решения задач по начертательной геометрии

Пересечение геометрических фигур

 Пример. Построить сечение пирамиды  фронтально проецирующей плоскостью .

Дано:

Пир.  

.

_____________

?:

Решение:

1).

2).

3).

4).

5). Видимость.

Форма сечения – треугольник. Вершины треугольника – результат пересечения трёх рёбер пирамиды с проецирующей плоскостью.

Обратившись к фронтальной плоскости проекций можно определить, что нижняя часть пирамиды находится под проецирующей плоскостью. Следовательно горизонтальная проекция нижней части пирамиды – не видима. Планетарные зубчатые передачи Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями.


Дано:

Кон. ,

Цил. .

_________

?: .

 Пример 3 (Рис. 39). Построить линию пересечения конической поверхности  с горизонтально проецирующим цилиндром .

Горизонтальная проекция линии пересечения совпадает с вырожденной проекцией цилиндрической поверхности. Остаётся построить фронтальную проекцию этой линии. Решив по сути дела задачу на принадлежность кривой линии к поверхности конуса при наличии ее одной проекции. Для этого на поверхности конуса необходимо задать каркас из прямолинейных образующих, построить точки пересечения линии с элементами каркаса и по фронтальным проекциям этих точек провести недостающую проекцию линии пересечения.

Видимость фронтальной проекции конуса определяется путем обращения к горизонтальной плоскости проекций.

Конические сечения

Секущая плоскость, не проходящая через вершину конуса вращения, оставляет на нем след в виде кривых 2-ого порядка (Рис.40). Если плоскость пересекает все образующие конуса, то получается замкнутая кривая: окружность или эллипс. Если же секущая плоскость параллельна к одной или к двум образующим, то результат пересечения – кривая, имеющая одну или две несобственные точки. Это – парабола или гипербола. Все зависит от степени наклона секущей плоскости относительно оси вращения в сравнении с половинным углом при вершине конуса:

Если , то – окружность,

Если , то – эллипс,

Если , то – парабола,

Если , то – гипербола.

 

 

 

 

Пересечение геометрических фигур с привлечением посредников Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так называемых посредников

Метод проецирующих секущих плоскостей

Пример . Построить линию пересечения плоскостей

Пример. Построить линию пересечения закрытого тора и полусферы


Способы преоразования проекций