Начертательнаягеометрия Метод совмещения плоскостей Сечение многогранников плоскостью Построить проекции фигуры сечения сферы плоскостью Метод эксцентрических сфер Изображение предметов Построить сечение пирамиды


Примеры решения задач по начертательной геометрии

Основные геометрические фигуры

Кривая линия общего вида

 Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких линий требуется: теоретически бесконечное, а практически – разумное конечное число точек. Для подобных кривых наиболее часто встречается задача на построение третьей ее проекции по двум заданным.

 Пример (Рис.21). Построить недостающую профильную проекцию кривой линии . Определение напряжений при внецентренном растяжении бруса Определить опытным путем нормальные напряжения в крайних волокнах поперечного сечения бруса при внецентренном растяжении и сравнить их с напряжениями, вычисленными теоретически.

 На заданной линии задаем достаточно плотный ряд точек (1,2,…) и для каждой из них решаем элементарную задачу на построение третьей проекции точки по двум заданным ее изображениям.

  Рекомендуется при работе с кривыми линиями конечные и другие особые (опорные) точки обозначать буквами, а промежуточные точки – цифрами. (И при необходимости – с учетом видимости).

 

 

 

 

Кинематические поверхности
Линейчатые поверхности с двумя направляющими и плоскостью параллелизма: Прямая и точка на плоскости треугольника.

  При образовании таких поверхностей образующая прямая скользит по направляющим линиям, оставаясь при этом параллельной к некоторой плоскости. Обычно в качестве плоскости параллелизма используется одна из плоскостей проекций.

 Разновидности и , соответственно, названия подобных поверхностей определяются формой их направляющих: в виде кривых или прямых линий. Если, к примеру, криволинейные направляющие обозначить  и , прямые направляющие -и и плоскость параллелизма как , то будем иметь следующие названия поверхностей:

  – цилиндроид,

 – коноид,

 – косая плоскость или гиперболический параболоид.

 На рис.22 показана одна из таких поверхностей.

2.4(б). Линейчатые поверхности с одной направляющей и с собственной или несобственной точкой:  или

 При образовании подобных поверхностей образующая прямая скользит по единственной криволинейной направляющей "" и проходит через точку или сохраняет определенное направление, заданное каким-либо вектором или прямой линией. В первом случае (Рис.23) образуется коническая поверхность с вершиной , во вором – цилиндрическая поверхность с параллельными образующими (Рис.24).

2.4(в). Поверхности вращения:

Поверхность вращения образуется вращением линии вокруг неподвижной оси

Взаимопринадлежность геометрических фигур Общие понятия взаимопринадлежности Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности

Точка на линии Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой линии.

Прямая и точка на плоскости


Способы преоразования проекций