Задачи
Электротехника
Реактор
Лекции
ПК
Электроника
ВВЭР-1200
Геометрия
Физика
Информатика
АЭС
Задачи
Строймех
Контрольная
Энергетика
Решения
смотрите ссылку . такими . тута

Решение задач по физике Электростатика

15.32. Плоская стеклянная пластинка толщиной d=2 см заряжена равномерно с объемной плотностью ρ=10 мкКл/м3. Найти разность потенциалов Δφ между точкой, лежащей на поверхности пластины, и точкой, находящейся внутри пластины в ее середине. Считать, что размеры пластины велики по сравнению с ее толщиной.

15.33. Сплошной парафиновый шар радиусом R=10 см равномерно заряжен с объемной плотностью ρ= l мкКл/мЗ. Определить потенциал φ электрического поля в центре шара и на его поверхности. Построить график зависимости φ (r).

15.34. Эбонитовый толстостенный полый шар несет равномерно распределенный по объему заряд с плотностью ρ=2 мкКл/м3. Внутренний радиус R1 шара равен 3 см, наружный R2=6 см. Определить потенциал φ шара в следующих точках: 1) на наружной поверхности шара; 2) на внутренней поверхности шара; 3) в центре шара.

Градиент потенциала и его связь с напряженностью поля

15.35. Бесконечная плоскость равномерно заряжена с поверхностной плотностью σ=4 нКл/м2. Определить значение и направление градиента потенциала электрического поля, созданного этой плоскостью.

15.36. Напряженность Е однородного электрического поля в некоторой точке равна 600 В/м. Вычислить разн0cть потенциалов U между этой точкой и другой, лежащей на прямой составляющей угол α=60º с направлением вектора напряженности. Расстояние, между точками равно 2 мм. [an error occurred while processing this directive]

15.37. Напряженность Е однородного электрического поля равна 120 В/м. Определить разность потенциалов U между этой точкой и другой, лежащей на той же силовой линии и отстоящей от первой на Δr=1 мм.

15.38. Электрическое поле создано положительным точечным зарядом. Потенциал поля в точке, удаленной от заряда на r=12 см, равен 24 В. Определить значение и направление градиента потенциала в этой точке.

15.39. Бесконечная тонкая прямая нить несет равномерно распределенный по длине нити заряд с плотностью τ= 1 нКл/м. Каков градиент потенциала в точке, удаленной на расстояние r=10 см от нити? Указать направление градиента потенциала.

15.40. Сплошной шар из диэлектрика (ε=3) радиусом R=10 см заряжен с объемной плотностью ρ=50 нКл/мЗ. Напряженность электрического поля внутри и на поверхности такого шара выражается формулой, где r - расстояние от центра шара до точки, в которой вычисляется напряженность поля. Вычислить разность потенциалов Δφ между центром шара и точками, лежащими на его поверхности.

Работа по перемещению зарядов в поле

15.41. Точечные заряды Q1=1 мкКл и Q2=0,1 мкКл находятся на расстоянии r1=10 см друг от друга. Какую работу А совершат силы поля, если второй заряд, отталкиваясь от первого, удалится от него на расстояние: 1)r2= 10 м; 2) rЗ=? [an error occurred while processing this directive]

 15.42. Электрическое поле создано двумя одинаковыми положительными точечными зарядами Q. Найти работу А1,2 сил поля по перемещению заряда Ql = 10 нKл из точки 1 с потенциалом φ1 = 300 В в точку 2 (рис. 15.10).

 15.43. Определить работу А1,2 по перемещению заряда Ql =50 нКл из точки 1 в- точку 2 (рис. 15.11) в поле, созданном двумя точечными зарядами, модуль |Q| которых равен 1 мкКл и a=0,l м.

15.44. Электрическое поле создано бесконечной равномерно заряженной плоскостью с поверхностной плотностью заряда σ =2 мкКл/м2. В этом поле вдоль прямой, составляющей угол α=60˚ с плоскостью, из точки 1 в точку 2, расстояние l между которыми равно 20 см (рис. 15.12), перемещается точечный электрический заряд Q=10 нКл. Определить работу А сил поля по перемещению заряда.

15.45. На отрезке прямого провода равномерно распределен заряд с линейной плотностью τ =1 мкКл/м. Определить работу А cил поля по перемещению заряда Q= 1 нКЛ из точки В в точку С (рис. 15.13).

 15.46. Тонкий стержень согнут в полукольцо. стержень заряжен с линейной плотностью τ = 133 нКл/м. Какую работу А надо совершить, чтобы перенести заряд Q=6,7 нКл из центра полукольца в бесконечность?

15.47. Тонкий стержень согнут в кольцо радиусом R=10 см. Он заряжен с линейной плотностью τ =300 нКл/м. Какую работу А надо совершить, чтобы перенести заряд Q=5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии l=20 см от центра его?


15.48. Электрическое поле создано равномерно распределенным по кольцу зарядом (τ = 1 мкКл/м). Определить работу А1,2 сил поля по перемещению заряда Q=10 нКл из точки 1 (в центре кольца) в точку 2, находящуюся на перпендикуляре к плоскости кольца (рис.15.14).

15.49. Определить работу А1,2 сил поля по перемещению заряда Q= 1 мкКлиз точки 1 в точку 2 поля, созданного заряженным проводящим шаром (рис. 15.15). Потенциал φ шара равен 1 кВ.

Движение заряженных частиц в электрическом поле

15.51. Электрон находится в однородном электрическом поле напряженностью Е=200 кВ/м. Какой путь пройдет электрон за время t= 1 нс, если его начальная скорость была равна нулю? Какой скоростью будет обладать электрон в конце этого интервала времени?

15.52. Какая ускоряющая разность потенциалов U требуется для того, чтобы сообщить скорость ν=30 Мм/с: 1) электрону; 2) протону?

15.53. Разность потенциалов U между катодом и анодом электронной лампы равна 90 В, расстояние r = 1 мм. С каким ускорением а движется электрон от катода к аноду? Какова скорость ν электрона в момент удара об анод? За какое время t электрон пролетает расстояние от катода до анода? Поле считать однородным.

15.54. Пылинка массой т= 1 пг, несущая на себе пять электронов, прошла в вакууме ускоряющую разность потенциалов U=3 МВ. Какова кинетическая энергия Т пылинки? Какую скорость ν приобрела пылинка?

Электрический диполь.

Свойства диэлектриков

Основные формулы

• Диполь есть система двух точечных электрических зарядов равных по размеру и противоположных по знаку, расстояние l между которыми значительно меньше расстояния r от центра диполя до точек наблюдения.

Вектор 1 проведенный от отрицательного заряда диполя к его положительному заряду, называется плечом диполя.

Произведение заряда |Q| диполя на его плечо l называется электрическим моментом диполя:

Потенциал поля диполя в точке, лежащей на оси диполя (α=0),

и в точке, лежащей на перпендикуляре к плечу диполя, восставленном из его середины (), φ = 0.

Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью

Е, M=[pE], или M=pE sin α,

где α - угол между направлениями векторов р и Е.

Индуцированный электрический момент молекулы

где α - поляризуемость молекулы (αе+αа, где αе - электронная пoляpизyeмость; αа - атомная пoляpизyeмость).

Связь диэлектрической восприимчивости с поляризуемостью молекулы

æ/(æ+3)=αn/3

где п - концентрация молекул.

Уравнение Клаузиуса - Мосотти

 

Р е ш е н и е. Из исходного положения (рис. 16.2, а) диполь можно повернуть на угол β=30º=π/6 двумя способами: или по часовой стрелке до угла α1 =α0 - β=π/3 - π/6=π/6 (рис. 16.2, б), или против часовой стрелки до угла α2=α0+β=π/3+π/6=π/2 (рис. 16.2, в).

В первом случае диполь будет повертываться под действием сил поля. Следовательно, работа внешних сил при этом отрицательна. Во втором случае поворот может быть произведен только под действием внешних сил, и, следовательно, работа внешних сил при этом положительна.

Работу, совершаемую при повороте диполя, можно вычислять двумя способами: 1) непосредственно интегрированием выражения элементарной работы; 2) с помощью соотношения между работой и изменением потенциальной энергии диполя в электрическом поле.

1-й способ. Элементарная работа при повороте диполя на угол α dA=Mdα=pE sinα dα, а полная работа при повороте на угол от α0 до α

Пример 2. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потенциала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.


Р е ш е н и е. Нейтральную систему, состоящую из трех точечных зарядов, можно представить в виде диполя. Действительно, "центр тяжести" зарядов Ql и Q2 лежит на середине отрезка прямой: соединяющей эти заряды (рис. 16.3). В этой точке можно считать сосредоточенным заряд Q=Ql+Q2=2Ql. А так как система зарядов нейтральная (Ql+Q2+Q3=0), то

Пример 3. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Определить поляризуемость α атома йода.

Р е ш е н и е. По определению поляризуемости, она может быть выражена по формуле  где р - индуцированный электрический момент атома; Eлок напряженность локального поля, в котором этот атом находится.

В данном случае таким полем является поле, созданное α-частицей. Напряженность этого поля определяется выражением

Подставив выражение Елок из равенства (2) в формулу (I), найдем

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и показатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

Р е ш е н и е. 1. Для определения электронной поляризуемости воспользуемся формулой Лоренц -Лорентца:

откуда

  (1)

В полученное выражение входит молярная масса М бензола. Найдем ее. Так как химическая формула бензола C6H6, то относительная молекулярная масса Мr=6·12+6·1=78. Следовательно, молярная масса

M=78·10-3 кг/моль.


Высокоточная лазерная резка и гравировка листовых материалов.

Математика