Задачи
Электротехника
Реактор
Лекции
ПК
Электроника
ВВЭР-1200
Геометрия
Физика
Информатика
АЭС
Задачи
Строймех
Контрольная
Энергетика
Решения

Решение задач по физике Внутренняя энергия реального газа

Потенциал. Энергия и системы электрических зарядов. Работа по перемещению заряда в поле.

Основные формулы

· Потенциал электрического поля есть величина, равная отношению потенциальной энергии точечного положительного заряда, помещенную в данную точку поля, к этому заряду;

j=П/Q,

или потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к этому заряду:

j=A/Q.

Потенциал электрического поля в бесконечности условно принят равным нулю. [an error occurred while processing this directive]

Отметим, что при перемещении заряда в электрическом поле работа Aв.с внешних сил равна по модулю работе Aс.п сил поля и противоположна ей по знаку:

Aв.с= – Aс.п.

· Потенциал электрического поля, создаваемый точечным зарядом Q на расстоянии r от заряда,

.

· Потенциал электрического поля, создаваемого металлической, несущей заряд Q сферой радиусом R, на расстоянии гот центра сферы:

внутри сферы (r<R) ;

на поверхности сферы (r=R) 

;

вне сферы (r>R) .

Во всех приведенных для потенциала заряженной сферы формулах e есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

· Энергия W взаимодействия системы точечных зарядов Q1, Q2, ..., Qn определяется работой, которую эта система зарядов может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой

,

где ji — потенциал поля, создаваемого всеми п–1 зарядами (за исключением 1-го) в точке, где расположен заряд Qi.

· Потенциал связан с напряженностью электрического поля соотношением

Е= –gradj.

Решен и е. Положим, что первый заряд Q1 остается неподвижным, а второй Q2 под действием внешних сил перемещается в поле, созданном зарядом Q1, приближаясь к нему с расстояния r1=t,5 м до r2=1 м.

Работа А' внешней силы по перемещению заряда Q из одной точки поля с потенциалом j1 в другую, потенциал которой j2, равна по модулю и противоположна по знаку работе А сил поля по перемещению заряда между теми же точками:

А'= —А.

Работа А сил поля по перемещению заряда A=Q(j1—j2). Тогда работа А' внешних сил может быть записана в виде

A'= –Q(j1—j2)=Q(j2—j1). (1)

Потенциалы точек начала и конца пути выразятся формулами

; .

Для определения потенциалов в точках 1 и 2 проведем через эти точки эквипотенциальные поверхности I и II. Эти поверхности будут плоскостями, так как поле между двумя равномерно заряженными бесконечными параллельными плоскостями однородно. Для такого поля справедливо соотношение

j1—j2=El, (2)

где Е — напряженность поля; l — расстояние между эквипотенциальными поверхностями.

Напряженность поля между параллельными бесконечными разноименно заряженными плоскостями E=s/e0. Подставив это выражение Е в формулу (2) и затем выражение j1—j2 в формулу (1), получим

A=Q(s/e0)l.

Пример 3. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см.

Решение. Выберем оси координат так, чтобы начало координат совпадало с центром кривизны дуги, а ось у была симметрично расположена относительно концов дуги (рис. 15.2). На нити выделим элемент длины dl. Заряд dQ=tdl, находящийся на выделенном участке, можно считать точечным.

Пример 4. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части.

Решение. Для определения разности потенциалов воспользуемся соотношением между напряженностью поля и изменением потенциала Е= —gradj. Для поля с осевой симметрией, каким является поле цилиндра, это соотношение можно записать в виде

Е= –(dj/dr), или dj= —Еdr.

Решение. Заряд, находящийся на стержне, нельзя считать точечным, поэтому непосредственно применить для вычисления потенциала формулу

, (1)

справедливую только для точечных зарядов, нельзя. Но если разбить стержень на элементарные отрезки dl, то заряд tdl, находящийся на каждом из них, можно рассматривать как точечный и тогда формула (1) будет справедлива. Применив эту формулу, получим

,  (2)

где r — расстояние точки, в которой определяется потенциал, до элемента стержня.

Из рис. 15.3 следует, что dl=(rda/cosa). Подставив это выражение dl в формулу (2), найдем.

Пример 6. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Решение. Электрон должен пройти такую разность потенциалов U, чтобы приобретенная при этом энергия W в сумме с кинетической энергией T, которой обладал электрон перед вхождением в поле, составила энергию, равную энергии ионизации Ei, т. е. W+T=Ei. Выразив в этой формуле W=eU и Т =(mv2/2), получим eU+(mv2/2)=Ei. Отсюда.

Электрон-вольт (эВ) — энергия, которую приобретает частица, имеющая заряд, равный заряду электрона, прошедшая разность потенциалов 1 В. Эта внесистемная единица энергии в настоящее время допущена к применению в физике.

 Пример 8. Электрон без начальной скорости прошел разность потенциалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряженного до разности потенциалов Ul=100 В, по линии АВ, параллельной пластинам (рис. 15.4). Расстояние d между пластинами равно 2 см. Длина l1 пластин конденсатора в направлении полета электрона, равна 20 cм. Определить расстояние ВС на экране Р, отстоящем от конденсатора на l2=1 м.

Задачи

Потенциальная энергия и потенциал поля точечных зарядов

15.1. Точечный заряд Q = 10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией П = 10 мкДж. Найти потенциал φ этой точки поля.

5.2. При перемещении заряда Q=20 нКл между двумя точками поля внешними силами была совершена работа А=4 мкДж. Определить работу A1 сил поля и разность Δφ потенциалов этих точек поля.

15.3. Электрическое поле создано точечным положительным зарядом Q1=6 нКл. Положительный заряд Q2 переносится из точки А этого поля в точку В (рис. 15.5). Каково изменение потенциальной энергии ΔП, приходящееся на единицу переносимого заряда, если r1=20 см и r2=50 см?

15.15. На отрезке тонкого прямого проводника равномерно распределен заряд с линейной плотностью τ=10 нКл/м. Вычислить потенциал φ, создаваемый этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.

15.16. Тонкий стержень длиной l=10 см несет равномерно распределенный заряд Q= 1 нКл. Определить потенциал τ электрического поля в точке, лежащей на оси стержня на расстоянии а=20 см от ближайшего его конца.

15.17. Тонкие стержни образуют квадрат со стороной длиной а. Стержни заряжены с линейной плотностью τ= 1,33 нКл/м. Найти потенциал φ в центре квадрата.

15.18. Бесконечно длинная тонкая прямая нить несет равномерно распределенный по длине нити заряд с линейной плотностью τ=0,01 мкКл/м. Определить разность потенциалов Δφ двух точек поля, удаленных от нити на r1=2 СМ и r2==4 см.


Математика