Задачи
Электротехника
Реактор
Лекции
ПК
Электроника
ВВЭР-1200
Геометрия
Физика
Информатика
АЭС
Задачи
Строймех
Контрольная
Энергетика
Решения

Решение задач по физике

Пример 2. В сосуде содержится газ, количество вещества v которого равно 1,2 моль. Рассматривая этот газ как идеальный, определить число DN молекул, скорости J которых меньше 0,001 наиболее вероятной скорости Jв.

Решение. Для решения задачи удобно воспользоваться распределением молекул по относительным скоростям u (u=J/Jв). Число dN(u) молекул, относительные скорости и, которых заключены в пределах от u до du, определяется формулой

, (1)

где N — полное число молекул.

По условию задачи, максимальная скорость интересующих нас молекул Jmax=0,001Jв, откуда umax=Jmax/Jв=0,001. Для таких значений и выражение (1) можно существенно упростить. В самом деле, для u«1 имеем е-2»1-u2. Пренебрегая значением u2=(0,001)2=10-6 по сравнению с единицей, выражение (1) запишем в виде

. (2)

Интегрируя это выражение по и в пределах от 0 до umax, получим

, или .  (3)

Выразив в (3) число молекул N через количество вещества и постоянную Авогадро, найдем расчетную формулу:

. (4)

Подставим в (4) значения величин v, na и произведем вычисления:

.

Пример 3. Зная функцию f(р) распределения молекул по импульсам, определить среднее значение квадрата импульса <p2>.

Решение. Среднее значение квадрата импульса <p2> можно определить по общему правилу вычисления среднего:

. (1)

Функция распределения молекул по импульсам имеет вид

 (2)

 Эта функция распределения уже нормирована на единицу, т. е.

. С учетом нормировки формулу (1) перепишем иначе:

 (3)

Подставим выражение f(p) по уравнению (2) в формулу (3) и вынесем величины, не зависящие от р, за знак интеграла:

Этот интеграл можяо свести к табличному (см. табл. 2)

, положив .

В нашем случае это даст

.

После упрощений и сокращений найдем

<p2>=3mkT.


Математика