Курс лекций и задач по физике

Туннельный диод

Концептуальная диаграмма.

Процессы, происходящие в полупроводнике в случае туннельного эффекта.

Вольт-амперная характеристика туннельного диода.

Параметры, применение.

Контрольные вопросы.

5.1. Концептуальная диаграмма Для приближенного расчета переменной составляющей тока всех вентилей, проходящей через выходной конденсатор выпрямителя, воспользуемся формулой

 


5.2. Процессы, происходящие в полупроводнике в случае туннельного эффекта

Туннельный диод относится к группе полупроводниковых приборов, вольт-амперные характеристики которых имеют участок, соответствующий отрицательному дифференциальному сопротивлению прибора. Туннельный диод применяется как многофункциональный прибор (усиление, генерация, переключение и др.) для работы преимущественно в области СВЧ. Он может работать и на более низких частотах, однако его эффективность в этом случае значительно ниже, чем, например, транзистора.

Туннельный диод создается на основе вырожденного полупроводника. При этом высокая доза примеси в высоколегированном полупроводниковом материале вызывает смещение уровня Ферми настолько, что он располагается у электронного полупроводника в зоне проводимости, а у дырочного — в валентной зоне (рис. 5.2, а). Таким образом, при изготовлении туннельного диода как в p-область, так и в n-область вводят легирующие примеси в очень большой концентрации (примерно 1019¸1020 см-3, что на 2—3 порядка выше, чем в обычных диодах). Вследствие этого ширина перехода весьма мала — порядка 0,01мкм. Внутри перехода возникает электрическое поле напряженностью Е=105¸106 В/см.

В основе работы туннельного диода лежит туннельный эффект, сущность которого заключается в том, что электрон, обладающий энергией, меньшей, чем высота потенциального барьера, может проникнуть с некоторой вероятностью сквозь этот тонкий потенциальный барьер. Электрон как бы пользуется своеобразным туннелем, чтобы пройти сквозь барьер, не поднимаясь над его уровнем. Этот процесс происходит очень быстро (со скоростью света).

При образовании p-n-перехода происходит смещение энергетических зон полупроводников с различным типом проводимости в такой мере, что уровень Ферми для них становится прямой горизонтальной линией. При этом в случае вырожденных полупроводников нижняя граница зоны проводимости n-области становится ниже верхней границы валентной зоны р-области. Для простоты рассуждений будем считать, что все разрешенные уровни, расположенные ниже уровня Ферми, заняты, а расположенные выше него — свободны.

В очень узких p-n-переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер. Однако для этого необходимо, чтобы напротив занятого электроном уровня по одну сторону барьера имелся свободный уровень за барьером.

Вольт-амперная характеристика туннельного диода Приведена вольт-амперная характеристика туннельного диода. Особенность этой характеристики заключается в следующем. В области обратных напряжений обратный ток растет очень быстро с повышением напряжения, т. е. туннельный диод обладает весьма малым обратным дифференциальным сопротивлением. В области прямых напряжений с увеличением напряжения прямой ток сначала растет до пикового значения I1 при напряжении U1 в несколько десятков милливольт, а затем начинает уменьшаться (участок АВ, в пределах которого туннельный диод обладает отрицательной проводимостью G. Ток спадает до минимального значения I2 при напряжении U2 порядка нескольких сотен миливольт, в дальнейшем прямой ток вновь начинает увеличиваться с ростом напряжения.

Для изготовления туннельных диодов применяются различные полупроводниковые материалы: германий, кремний, арсенид галлия, фосфат индия, арсенид индия, антимонид индия и антимонид галлия. Выбор материала в значительной степени определяется требуемыми параметрами прибора. Наиболее перспективным материалом является арсенид галлия, обладающий наилучшими параметрами. Для германиевых диодов в качестве доноров используют фосфор или мышьяк, а в качестве акцепторов — галлий или алюминий. Для арсенид-галлиевых - олово, свинец, серу, селен, теллур (доноры), цинк, кадмий (акцепторы). Для получения узкого p-n-перехода применяется метод вплавления или диффузии примесей.

Диод Шоттки Физические исследования контакта металл — полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.). Этим, а также большими успехами приборов с p-n-переходами и объясняется тот ограниченный интерес в отношении исследований контакта металл — полупроводник и создания приборов на его основе.

p-i-n-диод состоит из трех чередующихся областей: с дырочной, собственной и электронной проводимостью. Между сильно легированными областями с дырочной и электронной электропроводностью находится i-область с концентрацией носителей, близкой к концентрации pi и ni в собственном полупроводнике (рис. 6.4. б). Концентрации носителей в р-области рр и пр , а в n-области nn и рп∙ При подаче прямого напряжения в i-область одновременно инжектируются дырки из р-области и электроны из n-области. Сопротивление i-области и всего диода становится малым, его значение определяется постоянным током, протекающим через диод.. При обратном напряжении дырки и электроны экстрагируются из i-области в p- и n-области соответственно. Уменьшение концентрации носителей в i-области приводит к увеличению сопротивления i-об-ласти и всего диода. Такая зависимость сопротивления p-i-n-диода от напряжения объясняет эффективность его применения в качестве мощного выпрямительного диода, у которого должны быть малое прямое и большое обратное, сопротивления. Разработка p-i-n-диодов с малой емкостью позволила использовать их в СВЧ диапазоне.


На главную