Курс лекций и задач по физике

Лекции
Геометрия
Задачи
Решения

Закон полного тока. Свойство тока создавать магнитное поле называется намагничивающей силой тока Θ. В системе Си намагничивающая сила измеряется в амперах. Закон полного тока гасит: интеграл от напряженности магнитного поля по любому замкнутому контуру, равен алгебраической сумме токов, пронизывающих этот контур.  (1.8) где, i – номер тока; n – количество токов; l – средняя длина силовой линии. Положительными считаются токи, направления которых совпадают с направлением обхода контура. Положительные направления тока и магнитного поля, создаваемого этим током, связаны правилом правостороннего винта. Если положительное направление тока совпадает с направлением поступательного движения винта, то направление его вращения совпадает с положительным направлением магнитного поля.

Машины постоянного тока. Устройство. Основными частями машины являются: Статор – неподвижная часть, которая служит для создания постоянного неподвижного магнитного поля; Якорь – вращающаяся часть машины. Статор – литой, на его внутренней поверхности смонтированы чередующиеся полюсы, на которых смонтированы обмотки возбуждения, создающие магнитное поле.

Физическая природа проводимости Зонная теория и опытные данные показывают, что у всех металлов валентная зона заполнена лишь частично и либо соприкасается с зоной проводимости, либо зоны перекрываются. Поэтому, как отмечалось ранее, все металлы и сплавы хорошо проводят электрический ток. Отметим, что электроны, которые могут принимать участие в электрическом токе, называются свободными. Т.к. в металлах валентная зона перекрывается с зоной проводимости, то, следовательно, все валентные электроны могут принимать участие в электрическом токе. Число валентных электронов не зависит от температуры и у всех металлов одного порядка - 10 22 /см 3, а электропроводность отличается иногда в десятки раз, уменьшается с ростом температуры и зависит от содержания даже металлических примесей.

Проводниковые материалы Металлические проводниковые материалы разделяются на материалы высокой проводимости и материалы высокого сопротивления. Материалы высокой проводимости используются для изготовления проводов, обмоток электрических машин и аппаратов, электроизмерительных приборов и т.д. Материалы высокого сопротивления применяются в электронагревательных устройствах, лампах накаливания, реостатах и т.п. Металлические проводниковые материалы характеризуются удельным сопротивлением, температурными коэффициентами удельного сопротивления и линейного расширения, пределом прочности при растяжении и относительным удлинением при разрыве.

Полупроводниковые материалы Полупроводники - группа веществ с электронной проводимостью, удельное сопротивление которых при нормальной температуре лежит между удельными сопротивлениями проводников и диэлектриков. Удельное сопротивление различных проводников лежит в пределах 10 -6-10 -3, полупроводников - 10 -4-10 10, диэлектриков - 10 9-10 18 Ом . см. Однако, количественная оценка электропроводности не является основным признаком, выделяющим полупроводники в особую группу веществ. Электропроводность полупроводников качественно отличается от электропроводности проводников.

Расчет управляемого тиристорного выпрямителя

Классификация приборов микроволнового диапазона В настоящее время разработано много приборов, отличающихся как принципом действия, так и областью применения. Электровакуумные приборы СВЧ диапазона могут быть по характеру энергообмена разделены на приборы типов О и М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле или не используется совсем, или применяется только для фокусировки электронного потока и принципиального значения для процесса энергообмена не имеет.

Свободные носители зарядов в полупроводниках Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости (10-6—10-8 Ом-1см-1) являются промежуточными между проводниками и диэлектриками. Их удельная проводимость сильно зависит от температуры и концентрации примесей, а во многих случаях — и от различных внешних воздействий (света, электрического поля и др.). По своему составу полупроводники можно разделить на простые, если они образованы атомами одного химического элемента (например, германия Ge, кремния Si, селена Se), и сложные, если они являются химическим соединением или сплавом двух или нескольких химических элементов (например, антимонид индия InSb, арсенид галлия GaAS и др.).

Туннельный диод относится к группе полупроводниковых приборов, вольт-амперные характеристики которых имеют участок, соответствующий отрицательному дифференциальному сопротивлению прибора. Туннельный диод применяется как многофункциональный прибор (усиление, генерация, переключение и др.) для работы преимущественно в области СВЧ. Он может работать и на более низких частотах, однако его эффективность в этом случае значительно ниже, чем, например, транзистора.

Высокочастотные полевые транзисторы. Характеристики и параметры Полевым транзистором называется полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, управляемый электрическим полем. Полевые транзисторы были запатентованы в Англии в 1939 г., задолго до появления БT. Kонструктивно-технологические отличия ПT, вытекающие из их принципа действия, позволяют повысить частотную границу СВЧ-транзисторных устройств по сравнению с устройствами на основе БT.

Электромагнитное поле и параметры сред. Современная физика признает 2 формы существования материи: вещество и поле. Нам известны многие разновидности полей: электромагнитные, силовые, внутриядерных и других взаимодействий. Во многом свойства их сходны. Вещество состоит из дискретных элементов (молекул, атомов ...). Движущееся электромагнитное поле тоже можно представить в виде потока дискретных частиц — фотонов. Электромагнитное поле характеризуется энергией, массой, импульсом. Масса и импульс характерны только движущемуся электромагнитному полю (электромагнитное поле не имеет массы покоя). Энергия электромагнитного поля может преобразовываться в другие виды энергии.

Основные уравнения электродинамики. В электродинамике часто пользуются понятием точечного заряда. Под ним будем понимать заряженные тела, размеры которых значительно меньше расстояния между телами. В тех случаях, когда заряженные тела нельзя считать точечными для описания распределения зарядов вводят понятие объемной плотности электрического заряда в точке

Энергия электромагнитного поля. Баланс энергий электромагнитного поля. Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии. Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство.

Плоские электромагнитные волны. Под волнами подразумевают колебательные движения непрерывных сред. Принципиальные отличия в математическом описании волновых процессов и колебаний токов и напряжений в радиотехнических цепях состоит в том, что для полного описания любой системы достаточно знать конечное число токов и напряжений на различных участках схем. Для полного описания волнового процесса необходимо знать его характеристики в бесконечно большом числе точек в рассматриваемом пространстве. Природа волновых процессов весьма разнообразна: электромагнитные волны, акустические, гравитационные и т. д. Физики полагают, что при распространении любых волн среда постепенно вовлекается в некоторый физический процесс, в результате которого происходит распространение энергии в пространстве.

Диэлектрик и идеальный проводник

Элементы теории дифракции Строгая постановка задачи дифракции В большинстве реальных электромагнитных задачах поверхность раздела сред нельзя считать безграничной и плоской. А падающую волну плоской электромагнитной волной. В этом случае при падении электромагнитной волны на тело конечных размеров наряду с явлением отражения и преломления возникает процесс называемый дифракцией. В этом разделе будут рассмотрены методы решения задач рассеяния электромагнитной волны на металлических, расположенных в однородном изотропном пространстве. Волны будем считать гармоническими, металлические тела — идеально проводящими, а бесконечное изотропное пространство без потерь.

Волны в коаксиальной линии

Математика