Введение в математический анализ. Вычисление интеграла

Лекции
Геометрия
Задачи
Решения

Числовая последовательность. Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность x1, х2, …, хn = {xn}

Число е. Рассмотрим последовательность {xn} = . Если последовательность {xn} монотонная и ограниченная, то она имеет конечный предел.

Бесконечно малые функции.  Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если . Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

Понятие о комплексных числах. Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением: При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Производная функции, ее геометрический и физический смысл.  Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

Дифференциал функции

Применение дифференциала к приближенным вычислениям. Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Производные и дифференциалы высших порядков. Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Исследование функции на экстремум с помощью производных высших порядков

Возрастание и убывание функции, точки экстремума.

Непосредственное интегрирование. Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Интегрирование рациональных функций.  Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Интегрирование некоторых иррациональных функций. Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Несколько примеров интегралов, не выражающихся через элементарные функции. К таким интегралам относится интеграл вида , где Р(х) - многочлен степени выше второй. Эти интегралы называются эллиптическими.

При замене переменной в определенном интеграле следует помнить о том, что вводимая функция (в рассмотренном примере это функция sin) должна быть непрерывна на отрезке интегрирования. В противном случае формальное применение формулы приводит к абсурду.

Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подынтегральной функции в степенной ряд. Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.

Вычисление длины дуги кривой

Площадь поверхности тела вращения. Определение: Площадью поверхности вращения кривой АВ вокруг данной оси называют предел, к которому стремятся площади поверхностей вращения ломаных, вписанных в кривую АВ, при стремлении к нулю наибольших из длин звеньев этих ломаных.

Полное приращение и полный дифференциал. Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

Частные производные высших порядков. Если функция f(x, y) определена в некоторой области D, то ее частные производные  и  тоже будут определены в той же области или ее части.

Градиент. Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке ,

 Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Функциональные ряды.  Определение. Частными (частичными) суммами функционального ряда   называются функции

Справочный материал по теме «Аналитическая геометрия на плоскости» Декартова система координат (ДСК) на плоскости

Примерный вариант и образец выполнения контрольной работы №1 Задача 1. Даны координаты вершин треугольника АВС:

Справочный материал по темам «Элементы  линейной алгебры. Аналитическая геометрия в пространстве» Матрицы

Задача. Даны многочлен f(x) и матрица А: 

Задача. Даны уравнение кривой 2-го порядка и уравнение прямой.

Матрицы и определители. Понятие матриц (матрица-строка, матрица-столбец, квадратная, единичная, диагональная). Равенство матриц. Действия над матрицами (умножение матрицы на число, сложение, вычитание, умножение матриц, транспонирование матриц). Определители 2-го, 3-го и n-го порядка. Минор и алгеброическое дополнение. Обратная матрица и ее вычисление.

Решить систему линейных уравнений: a) по формулам Крамера; б) матричным методом; в) методом Гаусса.

Основы дифференцирования Функцией называется непрерывной, если в каждой своей точке из области определения, данная функция будет иметь производную.

Задача Ньютона-Лейбница Понятие неопределенного интеграла связано с понятием первообразной. Найти первообразную – это значит «взять интеграл» Интегрирование – это операция обратная дифференцированию.

Множества. Действительные числа. Множества, подмножества. Основные понятия

Предел функции одой переменной Определение предела Окрестностью точки x0 называется любой интервал с центром в точке x0. Пусть функция f(x) определена в некоторой окрестности точки x0 кроме самой точки x0.

Производные высших порядков Производная от функции f¢(x) называется производной второго порядка от функции f(x) (или второй производной) и обозначается

Комплексные числа Комплексным числом называется выражение вида z=x+iy, где х и у- действительные числа, i-мнимая единица (). Число x=Re(z) называется действительной частью числа z, а число y=Im(z) - мнимой частью числа z.

Интегрирование по частям определенного интеграла Если функции u=u(x) и v=v(x) имеют непрерывные производные на отрезке [а,в], то

Дифференциальные уравнения Дифференциальным уравнением называется уравнение, связывающее искомую функцию некоторой переменной, эту переменную и производные различных порядков данной функции: G(x, y, y¢,…, 

Понятие числового ряда Числовым рядом называется бесконечная последовательность чисел, соединенных знаком сложения:

Алгебра и аналитическая геометрия

Алгебраические операции. Основные типы алгебраических структур

Многочлены

Поле рациональных дробей Эвристические соображения. В анализе изучаются дробно-рациональные функции вида , где  − многочлены. Мы их будем рассматривать как формальные выражения.

Транспонирование матриц. Определитель транспонированной матрицы.

Линейное пространство Определение и простейшие свойства Пусть даны поле  с элементами, называемыми скалярами и обозначаемыми малыми греческими буквами , , , … и множество элементов, называемых векторами и обозначаемых латинскими буквами  .

Система линейных уравнений

Метод Гаусса решения СЛУ. На практике чаще всего используют метод Гаусса построения решений СЛУ. При этом при исследовании и решении СЛУ производятся элементарные преобразования строк расширенной матрицы : перестановка строк (это соответствует перестановке уравнений системы), сложение строк (это соответствует сложению уравнений системы), умножение строк на отличное от нуля число (это соответствует умножению уравнения системы на отличное от нуля число). Очевидно, что при указанных преобразованиях получается система, эквивалентная данной. Следовательно, после элементарных преобразований строк расширенной матрицы  получается расширенная матрица некоторой новой системы, эквивалентной данной системе.

Пространство геометрических векторов как пример линейного пространства

Двойной интеграл. Его основные свойства и приложения Мы будем рассматривать функции , определенные на квадрируемом (т.е. имеющем площадь) множестве . Если вспомнить теорию определенного интеграла, то мы начинали ее изложение с понятия разбиения отрезка . По аналогии, определим разбиение квадрируемого множества , как представление множества в виде объединения конечного числа квадрируемых частей, .

Полярные координаты бывают очень полезны при вычислениях. Рассмотрим пример. Найти.

Криволинейный интеграл 2-го рода

Признак полного дифференциала на плоскости Если - дифференцируемая функция двух переменных, то . Выясним, при каких условиях на существует такая функция , что , т.е. . В предположении непрерывности смешанных производных: или . Докажем, что если - односвязная область, то верно и обратное.

Интегралы по поверхности 1 и 2 рода Поверхностные интегралы 1-го рода. Пусть - двусторонняя поверхность, имеющая площадь . Рассмотрим разбиение этой поверхности на части с помощью непрерывных кривых. Пусть функция определена во всех точках поверхности . Выберем произвольным образом точки и рассмотрим сумму .

Формула Стокса. Ее векторная запись

Математика